[Home] [Server]

TA-fold results for job TF000001 (example)

  Submitted Sequence

>example
GENKVCGLTRGQDAKAAYDAGAIYGGLIFVATSPRCVNVEQAQEVMAAAPLQYVGVFRNH
DIADVVDKAKVLSLAAVQLHGNEEQLYIDTLREALPAHVAIWKALSVGETLPAREFQHVD
KYVLDNGQGGSGQRFDWSLLNGQSLGNVLLAGGLGADNCVEAAQTGCAGLDFNSAVESQP
GIKDARLLASVFQTLRAY

  Predicted Secondary Structure

Sequence:--------10--------20--------30--------40--------50--------60--------70--------80--------90-------100-------110-------120-------130-------140-------150-------160-------170-------180-------190
123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|12345678
GENKVCGLTRGQDAKAAYDAGAIYGGLIFVATSPRCVNVEQAQEVMAAAPLQYVGVFRNHDIADVVDKAKVLSLAAVQLHGNEEQLYIDTLREALPAHVAIWKALSVGETLPAREFQHVDKYVLDNGQGGSGQRFDWSLLNGQSLGNVLLAGGLGADNCVEAAQTGCAGLDFNSAVESQPGIKDARLLASVFQTLRAY
Secondary_structure:CCSSSSCCCCHHHHHHHHHHCCCSSSSSCCCCCCCCCCHHHHHHHHHHCCCCSSSSSCCCCHHHHHHHHHHCCCCSSSSCCCCCHHHHHHHHHHHCCCCCSSSSSCCCCCHHHHHCCCCCSSSSSCCCCCCCSSSCHHHHHHCCCCCSSSSCCCCHHHHHHHHHHCCCSSSCCCCCCCCCCCCCHHHHHHHHHHHHHC
Confidence_score:963882799999999999979988998438999988999999999995899769997399999999999981998899469999999999855524677058851343101066545898699827999887131678865258996797179996899999985997897066632589999999999999999849
H:Helix; S:Strand; C:Coil

Download the PSI-BLAST profile
Download the PSIPRED profile
Download the HHblits profile

  Predicted Fold

C-score# Fold library Predicted fold
1.000 27 folds c.1: TIM beta/alpha-barrel
1.000 184 folds c.1: TIM beta/alpha-barrel
1.000 1193 folds c.1: TIM beta/alpha-barrel


#C-score is the confidence score of the prediction. It is in the range of [0,1],
and the higher the better. In case the above three predictions are not consistent,
you are suggested to select/trust the one with the highest C-score.
Read more about the C-score



Please cite the following article when you use the TA-fold server:
  • J. Xia, Z. Peng, D. Qi, H. Mu, J. Yang. An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier, Bioinformatics, 33: 863-887, 2017.